Search results for "01 Mathematical Sciences"

showing 10 items of 13 documents

Differential branching fractions and isospin asymmetries of B -> K ((*)) μ(+) μ(-) decays

2014

The isospin asymmetries of $B \to K\mu^+\mu^-$ and $B \to K^{*}\mu^+\mu^-$ decays and the partial branching fractions of the $B^0 \to K^0\mu^+\mu^-$, $B^+ \to K^+\mu^+\mu^-$ and $B^+ \to K^{*+}\mu^+\mu^-$ decays are measured as functions of the dimuon mass squared, $q^2$. The data used correspond to an integrated luminosity of 3$~$fb$^{-1}$ from proton-proton collisions collected with the LHCb detector at centre-of-mass energies of 7$\,$TeV and 8$\,$TeV in 2011 and 2012, respectively. The isospin asymmetries are both consistent with the Standard Model expectations. The three measured branching fractions, while individually consistent, all favour lower values than their respective Standard M…

B physic01 natural sciences7. Clean energyB physicsLuminosity/dk/atira/pure/sustainabledevelopmentgoals/clean_water_and_sanitationHigh Energy Physics - ExperimentSettore FIS/04 - Fisica Nucleare e SubnuclearePhysics Particles & Fields[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]11.30.HvNuclear ExperimentQCPhysics02 Physical SciencesB physics; Branching fraction; Flavour Changing Neutral Currents; Hadron-Hadron Scattering; Rare decayPhysicsParticle physicsNuclear & Particles PhysicsFIS/01 - FISICA SPERIMENTALEIsospinPhysical SciencesBranching fractionFísica nuclearLHCSDG 6 - Clean Water and SanitationParticle Physics - ExperimentParticle physicsNuclear and High Energy Physics14.40.NdFlavour Changing Neutral CurrentsLHCb - Abteilung HofmannHadronsBranching (polymer chemistry)Standard Model0103 physical sciencesLeptonic semileptonic and radiative decays of bottom meson010306 general physicsFlavor symmetrieLarge Hadron Collider (France and Switzerland)01 Mathematical SciencesScience & TechnologyFlavour Changing Neutral CurrentHadron-Hadron Scattering010308 nuclear & particles physicshep-exGran Col·lisionador d'HadronsLHCbRare decay13.20.HeBottom mesons (|B|>0)High Energy Physics::ExperimentFísica de partículesExperimentsRare decay; Branching fraction; B physics; Flavour Changing Neutral Currents; Hadron-Hadron ScatteringFIS/04 - FISICA NUCLEARE E SUBNUCLEARE
researchProduct

Dynamical Casimir-Polder force between an excited atom and a conducting wall

2016

We consider the dynamical atom-surface Casimir-Polder force in the non-equilibrium configuration of an atom near a perfectly conducting wall, initially prepared in an excited state with the field in its vacuum state. We evaluate the time-dependent Casimir-Polder force on the atom, and find that it shows an oscillatory behavior from attractive to repulsive both in time and in space. We also investigate the asymptotic behavior in time of the dynamical force and of related local field quantities, showing that the static value of the force, as obtained by a time-independent approach, is recovered for times much larger than the timescale of the atomic self-dressing, but smaller than the atomic d…

General PhysicsField (physics)Vacuum stateNon-equilibrium thermodynamicsFOS: Physical sciences7. Clean energy01 natural sciencesquant-phQuantum mechanics0103 physical sciencesAtomPhysics::Atomic and Molecular ClustersPhysics::Atomic Physics010306 general physicsLocal field01 Mathematical SciencesPhysicsdispersion interactionsCondensed Matter::Quantum GasesQuantum Physics02 Physical Sciences010308 nuclear & particles physicsDynamical Casimir effectCasimir effectPotsdam Transfer - Zentrum für Gründung Innovation Wissens- und TechnologietransferExcited stateAtomic physics03 Chemical SciencesQuantum Physics (quant-ph)Radioactive decay
researchProduct

First search for dyons with the full MoEDAL trapping detector in 13 TeV pp collisions

2021

The MoEDAL trapping detector, consists of approximately 800 kg of aluminium volumes. It was exposed during Run-2 of the LHC program to 6.46 fb^-1 of 13 TeV proton-proton collisions at the LHCb interaction point. Evidence for dyons (particles with electric and magnetic charge) captured in the trapping detector was sought by passing the aluminium volumes comprising the detector through a SQUID magnetometer. The presence of a trapped dyon would be signalled by a persistent current induced in the SQUID magnetometer. On the basis of a Drell-Yan production model, we exclude dyons with a magnetic charge ranging up to 5 Dirac charges, and an electric charge up to 200 times the fundamental electric …

General PhysicsMoEDAL electric and magnetic charge dyonPhysics MultidisciplinaryMagnetic monopoleFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciences7. Clean energyElectric charge114 Physical sciencesMoEDAL Collaboration09 Engineeringlaw.inventionHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)MAGNETIC MONOPOLESSTOPPING-POWERlaw0103 physical sciencesPARTICLES010306 general physics01 Mathematical SciencesParticle Physics - PhenomenologyPhysicsRange (particle radiation)Large Hadron ColliderScience & Technology02 Physical Scienceshep-exPhysicsDetectorPersistent currenthep-phSQUIDHigh Energy Physics - PhenomenologyDyonPhysical SciencesHigh Energy Physics::ExperimentParticle Physics - Experiment
researchProduct

Spacetime curvature and Higgs stability after inflation

2015

We investigate the dynamics of the Higgs field at the end of inflation in the minimal scenario consisting of an inflaton field coupled to the Standard Model only through the non-minimal gravitational coupling $\xi$ of the Higgs field. Such a coupling is required by renormalisation of the Standard Model in curved space, and in the current scenario also by vacuum stability during high-scale inflation. We find that for $\xi\gtrsim 1$, rapidly changing spacetime curvature at the end of inflation leads to significant production of Higgs particles, potentially triggering a transition to a negative-energy Planck scale vacuum state and causing an immediate collapse of the Universe.

General PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)spacetime curvaturePhysics MultidisciplinaryVacuum stateFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciences09 Engineeringrenormalizationvacuum stateStandard ModelGravitationGeneral Relativity and Quantum CosmologyHigh Energy Physics - Phenomenology (hep-ph)vacuum stability0103 physical sciencesPARTICLE-PRODUCTIONELECTROWEAK VACUUMHiggs fieldHiggs particles010306 general physics01 Mathematical SciencesPlanck scalePhysicsInflation (cosmology)Science & Technology02 Physical SciencesQuantum field theory in curved spacetimeta114010308 nuclear & particles physicsPhysicsHigh Energy Physics::Phenomenologyhep-phInflatonFIELDSThe Standard ModelCREATIONHiggs fieldHigh Energy Physics - PhenomenologyPhysical Sciencesastro-ph.COHiggs bosonAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Observation of Electron Neutrino Appearance in a Muon Neutrino Beam

2014

The T2K experiment has observed electron neutrino appearance in a muon neutrino beam produced 295 km from the Super-Kamiokande detector with a peak energy of 0.6 GeV. A total of 28 electron neutrino events were detected with an energy distribution consistent with an appearance signal, corresponding to a significance of 7.3$\sigma$ when compared to 4.92 $\pm$ 0.55 expected background events. In the PMNS mixing model, the electron neutrino appearance signal depends on several parameters including three mixing angles $\theta_{12}$, $\theta_{23}$, $\theta_{13}$, a mass difference $\Delta m^2_{32}$ and a CP violating phase $\delta_{\mathrm{CP}}$. In this neutrino oscillation scenario, assuming $…

General PhysicsParticle physicsSolar neutrinoPhysics MultidisciplinaryFOS: Physical sciencesGeneral Physics and Astronomy7. Clean energy09 EngineeringHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Tau neutrino[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Neutrino oscillation01 Mathematical SciencesPhysicsScience & Technology02 Physical Scienceshep-exPhysicsHigh Energy Physics::PhenomenologyT2K experimentFísicaSolar neutrino problemNeutrino detectorT2K CollaborationPhysical SciencesMeasurements of neutrino speedHigh Energy Physics::ExperimentNeutrino
researchProduct

Magnetic Monopole Search with the Full MoEDAL Trapping Detector in 13 TeV pp Collisions Interpreted in Photon-Fusion and Drell-Yan Production

2019

MoEDAL is designed to identify new physics in the form of stable or pseudostable highly ionizing particles produced in high-energy Large Hadron Collider (LHC) collisions. Here we update our previous search for magnetic monopoles in Run 2 using the full trapping detector with almost four times more material and almost twice more integrated luminosity. For the first time at the LHC, the data were interpreted in terms of photon-fusion monopole direct production in addition to the Drell-Yan-like mechanism. The MoEDAL trapping detector, consisting of 794 kg of aluminum samples installed in the forward and lateral regions, was exposed to 4.0 fb$^{-1}$ of 13 TeV proton-proton collisions at the LHC…

General PhysicsPhotonPhysics beyond the Standard ModelPhysics MultidisciplinaryMagnetic monopoleGeneral Physics and AstronomyFOS: Physical sciencesddc:500.27. Clean energy01 natural sciences114 Physical sciencesMoEDAL Collaboration09 EngineeringHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)STOPPING-POWER0103 physical sciences010306 general physicsPROTON COLLISIONS01 Mathematical SciencesParticle Physics - PhenomenologyPhysicsLarge Hadron ColliderLuminosity (scattering theory)Science & Technology02 Physical SciencesMagnetic monopoleInteraction pointhep-exDirac (video compression format)PhysicsCharge (physics)hep-phHigh Energy Physics - PhenomenologyPhysical SciencesLHCParticle Physics - Experiment
researchProduct

The 1-loop effective potential for the Standard Model in curved spacetime

2018

The renormalisation group improved Standard Model effective potential in an arbitrary curved spacetime is computed to one loop order in perturbation theory. The loop corrections are computed in the ultraviolet limit, which makes them independent of the choice of the vacuum state and allows the derivation of the complete set of $\beta$-functions. The potential depends on the spacetime curvature through the direct non-minimal Higgs-curvature coupling, curvature contributions to the loop diagrams, and through the curvature dependence of the renormalisation scale. Together, these lead to significant curvature dependence, which needs to be taken into account in cosmological applications, which i…

High Energy Physics - TheoryDe Sitter spaceVacuum stateUNIVERSEfield theories in higher dimensionskosmologia01 natural sciencesGeneral Relativity and Quantum CosmologyPhysics Particles & FieldsHigh Energy Physics - Phenomenology (hep-ph)INFLATIONRADIATIVE-CORRECTIONSGauge theoryELECTROWEAK VACUUMMathematical physicsPhysics02 Physical SciencesPhysicshep-thhiukkasfysiikan standardimalliRENORMALIZATION-GROUP EQUATIONShep-phSPONTANEOUS SYMMETRY-BREAKINGNuclear & Particles PhysicsHigh Energy Physics - PhenomenologyHIGGS MASSPhysical SciencesGAUGE-THEORIESMathematics::Differential GeometryNuclear and High Energy Physicsgr-qcFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Curvatureclassical theories of gravityGeneral Relativity and Quantum Cosmology0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivityfield theories in lower dimensions010306 general physics01 Mathematical SciencesInflation (cosmology)Science & TechnologySpacetimeSTABILITYta114010308 nuclear & particles physicsgravitaatioLoop (topology)High Energy Physics - Theory (hep-th)INTERACTING SCALAR FIELDlcsh:QC770-798Perturbation theory (quantum mechanics)Journal of High Energy Physics
researchProduct

Combined Analysis of Neutrino and Antineutrino Oscillations at T2K.

2017

T2K reports its first results in the search for CP violation in neutrino oscillations using appearance and disappearance channels for neutrino- and antineutrino-mode beams. The data include all runs from January 2010 to May 2016 and comprise 7.482 ×10^(20) protons on target in neutrino mode, which yielded in the far detector 32 e-like and 135 μ-like events, and 7.471 × 10^(20) protons on target in antineutrino mode, which yielded 4 e-like and 66 μ-like events. Reactor measurements of sin(2)2θ(13) have been used as an additional constraint. The one-dimensional confidence interval at 90% for the phase δCP spans the range (−3.13, −0.39) for normal mass ordering. The CP conservation hypothesis …

Particle physicsGeneral PhysicsNeutrino oscillations; CP violation; Neutrino detectors530 PhysicsPhysics MultidisciplinaryFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciences7. Clean energy09 EngineeringHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Physics and Astronomy (all)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Neutrino detectors010306 general physicsNeutrino oscillationGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)01 Mathematical SciencesComputingMilieux_MISCELLANEOUSQCPhysicsScience & Technology02 Physical Sciences010308 nuclear & particles physicshep-exNeutrino oscillationsPhysicsCP violationNeutrino detectorantineutrino oscillationsT2K CollaborationPhysical SciencesCP violationNeutrinoPhysical review letters
researchProduct

Precise measurement of the neutrino mixing parameter θ23 from muon neutrino disappearance in an off-axis beam

2014

New data from the T2K neutrino oscillation experiment produce the most precise measurement of the neutrino mixing parameter theta_{23}. Using an off-axis neutrino beam with a peak energy of 0.6 GeV and a data set corresponding to 6.57 x 10^{20} protons on target, T2K has fit the energy-dependent nu_mu oscillation probability to determine oscillation parameters. Marginalizing over the values of other oscillation parameters yields sin^2 (theta_{23}) = 0.514 +0.055/-0.056 (0.511 +- 0.055), assuming normal (inverted) mass hierarchy. The best-fit mass-squared splitting for normal hierarchy is Delta m^2_{32} = (2.51 +- 0.10) x 10^{-3} eV^2/c^4 (inverted hierarchy: Delta m^2_{13} = (2.48 +- 0.10) …

Particle physicsGeneral PhysicsPhysics MultidisciplinaryMODELSGeneral Physics and AstronomyFOS: Physical sciencesMASS01 natural sciences09 EngineeringHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Physics and Astronomy (all)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]SCATTERINGMuon neutrino010306 general physicsNeutrino oscillationDETECTORMixing (physics)01 Mathematical SciencesPhysicsNeutronsScience & Technology02 Physical Sciences010308 nuclear & particles physicsScatteringOscillationhep-exPhysicsFísicaT2K CollaborationPhysical SciencesSYMMETRIESHigh Energy Physics::ExperimentNeutrinoHigh energy physics Mixing Parameter estimation Parameter extractionConfidence limit Energy dependent Neutrino oscillations Off-axis neutrino beam Oscillation parameters Oscillation probabilities Precise measurements Statistical uncertaintyBeam (structure)Energy (signal processing)
researchProduct

Measurement of the c0 Baryon Lifetime

2018

We report a measurement of the lifetime of the $��_c^0$ baryon using proton-proton collision data at center-of-mass energies of 7 and 8~TeV, corresponding to an integrated luminosity of 3.0 fb$^{-1}$ collected by the LHCb experiment. The sample consists of about 1000 $��_b^-\to��_c^0��^-\bar��_�� X$ signal decays, where the $��_c^0$ baryon is detected in the $pK^-K^-��^+$ final state and $X$ represents possible additional undetected particles in the decay. The $��_c^0$ lifetime is measured to be $��_{��_c^0} = 268\pm24\pm10\pm2$ fs, where the uncertainties are statistical, systematic, and from the uncertainty in the $D^+$ lifetime, respectively. This value is nearly four times larger than, …

Particles and fieldGeneral PhysicsMesonGeneral Physics and AstronomyFOS: Physical sciences01 natural sciences7. Clean energyOmega09 EngineeringNOLuminosityHigh Energy Physics - Experiment (hep-ex)Physics and Astronomy (all)0103 physical sciencesPhysicHeavy baryonTOOLSDG 7 - Affordable and Clean EnergyLHCb - Abteilung Hinton010306 general physicsINCLUSIVE WEAK DECAYS; DISCARDING 1/N(C); RULE; TOOL01 Mathematical SciencesQuantum chromodynamicsPhysics/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energy02 Physical Sciences010308 nuclear & particles physicsQuark modelParticle physicsState (functional analysis)HEPDISCARDING 1/N(C)BaryonLHCbHadron colliderHigh Energy Physics::ExperimentINCLUSIVE WEAK DECAYSLHCAtomic physicsFísica de partículesExperimentsRULECharm physics Oscillation Flavor physics Hadron-Hadron scattering
researchProduct